Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
prem - pseudo-remainder of polynomials
sprem - sparse pseudo-remainder of polynomials
Calling Sequence
prem(a, b, x, 'm', 'q')
sprem(a, b, x, 'm', 'q')
Parameters
a, b
-
multivariate polynomials in the variable x
x
indeterminate
m, q
(optional) unevaluated names
Description
The function prem returns the pseudo-remainder r such that
where and m (the multiplier) is:
If the fourth argument is present it is assigned the value of the multiplier m defined above. If the fifth argument is present, it is assigned the pseudo-quotient q defined above.
The function sprem has the same functionality as prem except that the multipler m will be to the power of the number of division steps performed rather than the degree difference. When sprem can be used it is preferred because it is more efficient.
Examples
See Also
Prem, quo, rem, Sprem
Download Help Document