Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Prem - inert pseudo-remainder function
Sprem - inert sparse pseudo-remainder function
Calling Sequence
Prem(a, b, x, 'm', 'q')
Sprem(a, b, x, 'm', 'q')
Parameters
a, b
-
multivariate polynomials in the variable x
x
indeterminate
m, q
(optional) unevaluated names
Description
The Prem and Sprem functions are placeholders for the pseudo-remainder and sparse pseudo-remainder of a divided by b where a and b are polynomials in the variable x. They are used in conjunction with either mod or evala which define the coefficient domain, as described below.
The function Prem returns the pseudo-remainder r such that:
where and m (the multiplier) is:
If the fourth argument is present it is assigned the value of the multiplier m defined above. If the fifth argument is present, it is assigned the pseudo-quotient q defined above.
The function Sprem has the same functionality as Prem except that the multiplier m will be to the power of the number of division steps performed rather than the degree difference. When Sprem can be used it is preferred because it is more efficient.
The calls Prem(a, b, x, 'm', 'q') mod p and Sprem(a, b, x, 'm', 'q') mod p compute the pseudo-remainder and sparse pseudo-remainder respectively of a divided by b modulo p, a prime integer. The coefficients of a and b must be multivariate polynomials over the rationals or coefficients over a finite field specified by RootOf expressions.
The calls evala(Prem(a, b, x, 'm', 'q')) and evala(Sprem(a, b, x, 'm', 'q')) compute the pseudo-remainder and sparse pseudo-remainder respectively of a and b, where the coefficients of a and b are multivariate polynomials with coefficients in an algebraic number (or function) field.
Examples
Prem uses a power of the leading coefficient to the degree difference for the multiplier
Sprem uses a smaller power of the leading coefficient for the multiplier
See Also
evala, mod, prem, Rem, RootOf, sprem
Download Help Document