Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[linsolve] - solution of linear equations
Calling Sequence
linsolve(A, b, 'r', v)
linsolve(A, B, 'r', v)
Parameters
A
-
matrix
b
vector
B
r
(optional) name
v
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function linsolve(A, b) finds the vector x which satisfies the matrix equation . If A has n rows and m columns, then must be n and will be m, if a solution exists.
If has no solution or if Maple cannot find a solution, then the null sequence NULL is returned. If has many solutions, then the result will use global names (see below) to describe the family of solutions parametrically.
The call linsolve(A, B) finds the matrix X which solves the matrix equation where each column of X satisfies . If has does not have a unique solution, then NULL is returned.
The optional third argument is a name which will be assigned the rank of A.
The optional fourth argument allows you to specify the seed for the global names used as parameters in a parametric solution. If there is no fourth argument, the default, then the global names _t[1], _t[2], _t[3], ... will be used in the vector case, _t[1][1], _t[1][2], _t[2][1], ... in the matrix case (where _t[1][i] is used for the first column, _t[2][i] for the second, etc). This is particularly useful when programming with linsolve. If you declare v as a local variable and then call linsolve with fourth argument v, the resulting parameters (v[1], v[2], ...) will be local to the procedure.
An inert linear solver, Linsolve, is known to the mod function and can be used to solve systems of linear equations (matrix equations) modulo an integer m.
The command with(linalg,linsolve) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[leastsqrs], LinearAlgebra, LinearAlgebra[LinearSolve], Linsolve, solve
Download Help Document