Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Linsolve - inert matrix solve
Calling Sequence
Linsolve(A, b) mod n
Linsolve(A, b, 'r', 't') mod n
Parameters
A
-
rectangular Matrix
b
Vector
'r'
(optional) name
't'
n
an integer, the modulus
Description
The Linsolve function is a placeholder for representing the solution x to the linear system .
The call Linsolve(A,b) mod n computes the solution vector b if it exists of the linear system over a finite ring of characteristic n. This includes finite fields, , the integers mod p, and where elements of are expressed as polynomials in RootOfs.
If an optional third parameter r is specified, and it is a name, it is assigned the rank of the matrix A.
A linear system with an infinite set of solutions will be parameterized in terms of variables. Maple uses the global names _t[1], _t[2], ... are used by default. If an optional fourth parameter t is specified, and it is a name, the names t[1], t[2], etc. will be used instead.
Examples
An example using GF(2^4).
See Also
Gaussjord, Inverse, mod, Modular[LinearSolve]
Download Help Document