Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Gausselim - inert Gaussian elimination
Gaussjord - inert Gauss Jordan elimination
Calling Sequence
Gausselim(A) mod p
Gaussjord(A) mod p
Gausselim(A, 'r', 'd') mod p
Gaussjord(A, 'r', 'd') mod p
Parameters
A
-
Matrix
'r'
(optional) for returning the rank of A
'd'
(optional) for returning the determinant of A
'p'
an integer, the modulus
Description
The Gausselim and Gaussjord functions are placeholders for representing row echelon forms of the rectangular matrix A.
The commands Gausselim(A,...) mod p and Gassjord(A,...) mod p apply Gaussian elimination with row pivoting to A, a rectangular matrix over a finite ring of characteristic p. This includes finite fields, GF(p), the integers mod p, and GF(p^k) where elements of GF(p^k) are expressed as polynomials in RootOfs.
The result of the Gausselim command is a an upper triangular matrix B in row echelon form. The result of the Gaussjord command is also an upper triangular matrix B but in reduced row echelon form.
If an optional second parameter is specified, and it is a name, it is assigned the rank of the matrix A.
If A is an by matrix with and if an optional third parameter is also specified, and it is a name, it is assigned the determinant of the matrix A[1..m,1..m].
Examples
See Also
Det, Inverse, LinearAlgebra[GaussianElimination], LinearAlgebra[Modular], mod, Modular[RowReduce]
Download Help Document