Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LerchPhi - general Lerch Phi function
Calling Sequence
LerchPhi(z, a, v)
Parameters
z
-
algebraic expression
a
v
Description
The Lerch Phi function is defined as follows:
This definition is valid for or . By analytic continuation, it is extended to the whole complex -plane for each value of and .
If and are positive integers, LerchPhi(z, a, v) has a branch cut in the -plane along the real axis to the right of , with a branch point at .
If is a non-positive integer, LerchPhi(z, a, v) is a rational function of with a pole of order at .
LerchPhi(1,a,v) = Zeta(0,a,v). If , it is also true that limit(LerchPhi(z,a,v),z=1) = Zeta(0,a,v). If , this limit does not exist.
If , LerchPhi(z, a, v) has an infinite singularity at each non-positive integer v.
If the coefficients of the series representation of a hypergeometric function are rational functions of the summation indices, then the hypergeometric function can be expressed as a linear sum of Lerch Phi functions.
If the parameters of the hypergeometric functions are rational, we can express the hypergeometric function as a linear sum of polylog functions.
Examples
See Also
hypergeom, polylog, Zeta
References
Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953.
Download Help Document