Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Zeta - The Riemann Zeta function; the Hurwitz Zeta function
Calling Sequence
Zeta(z)
Zeta(n, z)
Zeta(n, z, v)
Parameters
n
-
algebraic expression; understood to be a non-negative integer
z
algebraic expression
v
algebraic expression; understood not to be a non-positive integer
Description
The Zeta function (zeta function) is defined for Re(z)>1 by
and is extended to the rest of the complex plane (except for the point z=1) by analytic continuation. The point z=1 is a simple pole.
The call Zeta(n, z) gives the nth derivative of the Zeta function,
You can enter the command Zeta using either the 1-D or 2-D calling sequence. For example, Zeta(1, 1/2) is equivalent to .
The optional third parameter v changes the expression of summation to 1/(i+v)^z, so that for Re(z)>1,
and, again, this is extended to the complex plane less the point 1 by analytic continuation. The point z=1 is a simple pole for the function Zeta(0, z, v).
The third parameter, v, can be any complex number which is not a non-positive integer.
The function Zeta(0, z, v) is often called the Hurwitz Zeta function or the Generalized Zeta function.
Examples
See Also
initialfunctions, JacobiZeta, PolynomialTools[Hurwitz]
References
Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953. Vol. 1.
Download Help Document