Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
galois - compute the Galois group of an irreducible polynomial
Calling Sequence
galois(f)
galois(f, x)
Parameters
f
-
irreducible polynomial
x
name
Description
The galois command computes the Galois group of a polynomial f. The argument f must be an irreducible polynomial in x over Q --the field of rational numbers-- or over , where the ti's are variables.
The Galois group of a polynomial over , where is the field of complex numbers, can be computed with algcurves[monodromy](f, t, x, group).
For polynomials over Q, the maximum degree is 9. For polynomials over , the maximum degree in x is 8.
If f is a univariate polynomial, the argument x is optional.
The galois function returns an expression sequence of five elements:
1- A string giving the name of the Galois group using the notation of "The Transitive Groups of Degree up to Eleven" by G. Butler and J. McKay, Communications in Algebra, 11(8) 1983. For instance "8T24" stands for the twenty-fourth group in the list of degree 8 transitive groups.
2- A set of strings, each string giving a description for the group according to "On Transitive Permutation Groups" by J. H. Conway, A. Hulpke and J. McKay, London Mathematical Society Journal of Computation and Mathematics. See group[transnames] for more details.
3- A string indicating the parity of the group ("+" for even groups, "-" for odd groups).
4- The order of the group.
5- A set of generators in disjoint cycle notation. The generators are represented by strings.
Note that specialization of the parameters t1, t2, ... ,tn results in a group which is a subgroup of the original group. (See, for example, van der Wärden, Algebra I, 8.10.)
The set of generators can be used to build a permutation group with the permgroup command of the group package.
The function group[transgroup] returns information about transitive permutation groups.
The galois procedure is able to print out details of how the Galois group is computed. To see some of this information you must first type infolevel[galois]:=1; before calling galois. To see all of the details type infolevel[galois]:=2; before invoking galois.
Examples
See Also
GF, group, infolevel
Download Help Document