Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
convert/ratpoly - convert series to a rational polynomial
Calling Sequence
convert(series, ratpoly, numdeg, dendeg)
Parameters
series
-
series; type 'laurent' or a Chebyshev series
numdeg
integer; specify numerator degree
dendeg
integer; specify denominator degree
Description
The convert/ratpoly function converts a series to a rational polynomial (rational function). If the first argument is a Taylor or Laurent series then the result is a Pade approximation, and if it is a Chebyshev series then the result is a Chebyshev-Pade approximation.
The first argument must be either of type 'laurent' (hence a Laurent series) or else a Chebyshev series (represented as a sum of products in terms of the basis functions for integers k).
If the third and fourth arguments appear, they must be integers specifying the desired degrees of numerator and denominator, respectively. (Note: The actual degrees appearing in the approximant may be less than specified if there exists no approximant of the specified degrees.)
If the third and fourth arguments are not specified then the degrees of numerator and denominator are chosen to be m and n, respectively, such that and either or (The order of a Chebyshev series is defined to be where d is the highest-degree term which appears.)
For the Pade case, two different algorithms are implemented. For the pure univariate case where the coefficients contain no indeterminates and no floating-point numbers, a ``fast'' algorithm due to Cabay and Choi is used. Otherwise, an algorithm due to Geddes based on fraction-free symmetric Gaussian elimination is used.
For the Chebyshev-Pade case, the method used is based on transforming the Chebyshev series to a power series with the same coefficients, computing a Pade approximation for the power series, and then converting back to the appropriate Chebyshev-Pade approximation.
Examples
See Also
convert, convert/confrac, series, type/laurent
References
Cabay, S., and Choi, D. K. "Algebraic Computations of Scaled Pade Fractions." SIAM J. Comput. Vol. 15(1), (Feb. 1986): 243-270.
Geddes, K. O. "Block Structure in the Chebyshev-Pade Table." SIAM J. Numer. Anal. Vol. 18(5), (Oct. 1981): 844-861.
Geddes, K. O. "Symbolic Computation of Pade Approximants." ACM Trans. Math. Software, Vol. 5(2), (June 1979): 218-233.
Download Help Document