Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Ratrecon - inert rational function reconstruction
Calling Sequence
Ratrecon(u, m, x, N, D) mod p
Ratrecon(u, m, x, N, D, 'n', 'd') mod p
Parameters
u, m
-
polynomials in x
x
name
N, D
(optional) non-negative integers
n, d
(optional) variables
p
integer > 1
Description
This routine reconstructs a rational function from its image where u and m are polynomials in , and is a field of characteristic p.
Given and non-negative integers N and D, if the call Ratrecon(u,m,x,N,D) mod p succeeds then the output is a rational function n/d in x such that
Otherwise Ratrecon returns FAIL indicating that no such polynomials n and d exist. The reconstruction is unique up to multiplication by a constant in if the following condition holds.
N + D < degree(m,x)
If the optional parameters N and D are not specified then they are determined by the degree of m. They are assigned the largest possible values satisfying the above constraint such that N=D or N-D=1.
If the optional parameters n and d are specified then Ratrecon returns either true or false. If rational reconstruction succeeds then true is returned and these parameters are assigned the numerator and denominator separately, otherwise false is returned and these parameters are not changed.
The special case of corresponds to computing the (N, D) Pade approximate to the series u of order .
If the first input u is a polynomial in variables other than x then Ratrecon is applied to the coefficients of the polynomial in those variables. See the last example in the Examples section.
For the special case of , the polynomial is the inverse of u in provided u and m are relatively prime.
Examples
See Also
convert[ratpoly], iratrecon, mod, ratrecon
Download Help Document