Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
ProbSplit - probabilistic splitting of same degree factors
Calling Sequence
ProbSplit(a, d, x, K) mod p
Parameters
a
-
univariate polynomial in x
d
positive integer
x
name
K
(optional) RootOf
p
prime integer
Description
ProbSplit factors a monic square-free univariate polynomial over a finite field where it is known to contain factors of degree d only. The factorization is returned as a set of irreducible factors.
This function is normally used with the DistDeg function which is used to split a polynomial into factors which contain factors of the same degree. The ProbSplit function can then be applied to split those factors.
This function can also be used to compute the roots of a polynomial over a large finite field efficiently. If a is square-free, p>2, then the product of linear factors g dividing a is given by . The quantity can be computed using efficiently for large p using . Applying ProbSplit(g, 1, x) mod p splits g into linear factors, hence obtaining the roots of a.
The optional argument K specifies an extension field over which the factorization is to be done. See Factor for further information. Note: only the case of a single field extension is implemented.
Algorithm: a probabilistic method of Cantor-Zassenhaus is used to try to split the polynomial a of degree n into m=(n/d) factors of degree d. The average complexity is assuming classical algorithms for polynomial arithmetic.
Examples
Factor the square-free polynomial a over GF(2)
This tells us that there are two linear factors, and one quartic factor. To complete the factorization we split the quadratic factor
Compute the roots of x^4-2=0 mod 10^10-33
See Also
DistDeg, Factor, Factors, RootOf, Sqrfree
References
Cantor, D. G., and Zassenhaus, H. "A New Algorithm for Factoring Polynomials over a Finite Field." Mathematics of Computation, Vol. 36, (1981): 587-592.
Geddes, K. O.; Labahn, G.; and Czapor, S. R. Algorithms for Computer Algebra. Kluwer Academic Publishers, 1992.
Download Help Document