Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
OreTools[Content] - return the content of an Ore polynomial
OreTools[Primitive] - return primitive part of an Ore polynomial
OreTools[MonicAssociate] - return left or right monic associate of an Ore polynomial
OreTools[Normalize] - return the normal form of an Ore polynomial
Calling Sequence
Content(Poly, 'p')
Primitive(Poly, 'c')
MonicAssociate['left'](Poly, 's')
MonicAssociate(Poly, 's')
MonicAssociate['right'](Poly, A, 's')
Normalize(Poly)
Parameters
Poly
-
Ore polynomial; to define an Ore polynomial, use the OrePoly structure.
A
Ore algebra; to define an Ore algebra, use the SetOreRing function.
c, p, s
(optional) names
Description
The Content(Poly, 'p') calling sequence returns the content of the Ore polynomial Poly. If the second (optional) argument p is present, the primitive part of Poly is assigned to p.
The Primitive(Poly, 'c') calling sequence returns the primitive part of the Ore poly Poly. If the second (optional) argument c is present, the content of Poly is assigned to c.
If the coefficients of Poly are integral (commutative) polynomials, then its content is the gcd of its coefficients and its primitive part is equal to (1/c) Poly.
If the coefficients of Poly are rational functions, then its content and primitive part pp satisfy:
The primitive part pp is an Ore polynomial with integral (commutative) polynomial coefficients whose content is 1. Poly = c pp
The MonicAssociate['left'](Poly, 's') or MonicAssociate(Poly, 's') calling sequence returns (1/l) Poly where l is the leading coefficient of Poly. If the second (optional) argument s is present, (1/l) is assigned to l.
The MonicAssociate['right'](Poly, A, 's') calling sequence returns Poly a, where a belongs to the coefficient field such that the product (Poly a) is monic. If the third (optional) argument s, is present, a is assigned to s.
The Normalize(Poly) calling sequence returns Poly with nonzero leading coefficient when Poly is nonzero; returns 'OrePoly'(0), otherwise.
Examples
See Also
OreTools, OreTools/Arith, OreTools/OreAlgebra, OreTools/OrePoly
Download Help Document