Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
ModifiedMeijerG - modified Meijer G function
Calling Sequence
ModifiedMeijerG(as, bs, cs, ds, z)
Parameters
as
-
list of the form [a1, ..., am]; first group of numerator parameters
bs
list of the form [b1, ..., bn]; first group of denominator parameters
cs
list of the form [c1, ..., cp]; second group of numerator parameters
ds
list of the form [d1, ..., dq]; second group of denominator parameters
z
expression
Description
The modified Meijer G function is defined by the inverse Laplace transform:
where
and L is one of three types of integration paths , , and .
Contour starts at and finishes at ().
Contour starts at and finishes at .
All the paths , , and put all poles on the right and all other poles of the integrand (which must be of the form ) on the left.
The classical definition of the Meijer G function is related to the modified definition by
Note: See Prudnikov, Brychkov, and Marichev.
Three noticeable differences between the notations are:
the parameters of the modified Meijer G function are separated out into four natural groups,
instead of is placed inside the integral definition of ModifiedMeijerG, and
the pq\mn subscripts and superscripts which are now redundant are omitted.
Use of this function in Maple is not recommended. MeijerG should be used instead. This function is provided only for backward compatibility.
Examples
See Also
convert/MeijerG, convert/StandardFunctions, MeijerG
References
Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. Gordon and Breach Science, 1990.
Download Help Document