Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Hermite - compute the Hermite Normal Form of a matrix mod p
Smith - compute the Smith Normal Form of a matrix mod p
Calling Sequence
Hermite(A, x)
Hermite(A, x, U)
Smith(A, x, U, V)
Parameters
A
-
rectangular matrix of univariate polynomials in x
x
name
U
V
Description
Hermite and Smith are placeholders for representing the Hermite and Smith Normal Forms respectively. They are used in conjunction with mod as is described below.
Hermite(A, x) mod p computes the Hermite Normal Form (reduced row echelon form) of an m by n rectangular matrix of univariate polynomials in x over the integers modulo p. The polynomial coefficients must be rational or elements of a finite extension field specified by RootOfs. In the case of three arguments, the third argument, U, will be assigned the transformation matrix upon completion, such that Hermite(A) = U &* A.
Smith(A, x) mod p computes the Smith Normal Form of a matrix with univariate polynomial entries in x over the integers modulo p. The coefficients of the polynomial must be either rational or elements of a finite extension field specified by RootOfs. In the case of four arguments, the third argument U and the fourth argument V will be assigned the transformation matrices on output, such that Smith(A) = U &* A &* V.
Examples
To obtain the column form for the HNF of A do
See Also
LinearAlgebra[HermiteForm], LinearAlgebra[Modular], LinearAlgebra[SmithForm], RootOf
Download Help Document