Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Content - inert content function
Primpart - inert primitive part function
Calling Sequence
Content(a, x, 'pp')
Primpart(a, x, 'co' )
Parameters
a
-
multivariate polynomial in x
x
(optional) name or set or list of names
pp
(optional) unevaluated name
co
Description
Content and Primpart are ``placeholders'' for a content and primitive part of a polynomial over a coefficient domain. They are used in conjunction with mod and evala as described below.
The calls Content(a, x) mod p and Primpart(a, x) mod p compute the content and primitive part of a respectively modulo the prime integer p. The argument a must be a multivariate polynomial over the rationals or over a finite field specified by RootOfs. See content for more information.
The calls evala(Content(a,x)) and evala(Primpart(a,x)) compute a content and a primitive part of a respectively over a coefficient domain which may include algebraic numbers and algebraic functions. The polynomial a must be a multivariate polynomial with algebraic number (or function) coefficients specified by RootOfs or radicals. See evala,Content for more information.
The optional arguments 'pp' and 'co' are assigned a/Content(a) and a/Primpart(a) respectively, computed over the appropriate coefficient domain.
Examples
See Also
content, evala, mod, primpart, RootOf
Download Help Document