Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Berlekamp - distinct degree factorization
Calling Sequence
Berlekamp(a, x) mod p
Berlekamp(a, x, K) mod p
Parameters
a
-
univariate polynomial in x
x
name
K
a RootOf
p
prime integer
Description
This function computes the factorization of a monic square-free univariate polynomial over a finite field GF(p^k) using Berlekamp's algorithm. The factorization is returned as a set of irreducible factors. It is an alternative to the Cantor Zassenhaus distinct degree algorithm which is used by the Factor command. It is more efficient when p is large and the polynomial is irreducible or has only a few factors.
If the user wants to factor a polynomial which is not monic and square-free, i.e. the leading coefficient is not 1, or there are repeated factors, then the user should apply the Sqrfree function first. Note, the condition that a polynomial be square-free is .
The optional argument K specifies an extension field over which the factorization is to be done. See Factor for further information. Note: Only the case of a single field extension is implemented.
The algorithm used is known as Big Prime Berlekamp because its complexity is good also for large primes. For the case where the input polynomial is irreducible, the running time of the algorithm is arithmetic operations in GF(p^k). This is better than the Cantor Zassenhaus distinct degree algorithm. However, if the polynomial factors into many factors, these factors must be split using a probabilistic method. The running time increases to be in the average case.
The implementation uses Maple library code to do the linear algebra. This is not very efficient for GF(p) where p is small. The overhead of the Maple interpreter becomes small at about or in the case of an extension field.
Examples
See Also
DistDeg, Factor, Factors, RootOf, Sqrfree
References
Berlekamp, E.R. "Factoring Polynomials over Large Finite Fields." Mathematics of Computation. 1970. Vol. 24.
Geddes, K.O.; Czapor, S.R.; and Labahn, G. Algorithms for Computer Algebra. Kluwer Academic Publishers, 1992.
Monagan, M.B. "von zur Gathen's Factorization Challenge." ACM SIGSAM Bulletin, (April 1993): 13-18.
Download Help Document