Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
ratrecon - rational function reconstruction
Calling Sequence
ratrecon(u, m, x, N, D)
Parameters
u, m
-
polynomials in x
x
name
N, D
(optional) non-negative integers
Description
The purpose of this routine is to reconstruct a rational function in x from its image where u and m are polynomials in , and is a field of characteristic 0. Given positive integers N and D, ratrecon returns the unique rational function if it exists satisfying , , , and . Otherwise ratrecon returns FAIL, indicating that no such polynomials n and d exist. The rational function r exists and is unique up to multiplication by a constant in provided the following conditions hold:
If the integers N and D are not specified, they both default to be the integer .
Note, in order to use this routine to reconstruct a rational function from u satisfying , the modulus m being used must be chosen to be relatively prime to d. Otherwise the reconstruction returns FAIL.
The special case of corresponds to computing the N,D Pade approximate to the series u of order .
For the special case of , the polynomial is the inverse of u in provided u and m are relatively prime.
Examples
Error, (in ratrecon) degree bounds too big
See Also
convert[ratpoly], gcdex, iratrecon, Ratrecon
Download Help Document