Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MultiSeries[taylor] - Taylor expansion
Calling Sequence
taylor(expr, x)
taylor(expr, x=a)
taylor(expr, x=a, n)
Parameters
expr
-
algebraic expression
x
name; the series variable
a
(optional) algebraic expression; the expansion point
n
(optional) non-negative integer; the expansion order
Description
The taylor function computes a truncated Taylor expansion of expr, with respect to the variable x, about the point a, up to order n. If a is not given, it defaults to 0.
The taylor function of the MultiSeries package is intended to be used in the same manner as the top-level taylor function.
If the given expression does not have a Taylor expansion around a, then taylor issues an error. In that case, the MultiSeries[series] or MultiSeries[multiseries] functions can be used to obtain a more general series expansion.
The underlying engine for computing expansions is the MultiSeries[multiseries] function. In particular, the variable x is assumed to tend to its limit point a in the manner described in MultiSeries[multiseries].
In rare cases, it might be necessary to increase the value of the global variable Order in order to improve the ability of taylor to solve problems with significant cancellation. This is made explicit by an error message coming from multiseries.
It can also happen that the result is wrong because Testzero failed to recognize that the leading coefficient of a multiseries expansion happens to be 0. In those cases, it is necessary to modify this environment variable (see Testzero).
Examples
Error, (in MultiSeries:-taylor) does not have a taylor expansion, try series()
See Also
MultiSeries, MultiSeries[asympt], MultiSeries[LeadingTerm], MultiSeries[limit], MultiSeries[multiseries], Order, series, taylor, Testzero
Download Help Document