Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MeijerG - Meijer G function
Calling Sequence
MeijerG([as, bs], [cs, ds], z)
Parameters
as
-
list of the form [a1, ..., am]; first group of numerator parameters
bs
list of the form [b1, ..., bn]; first group of denominator parameters
cs
list of the form [c1, ..., cp]; second group of numerator parameters
ds
list of the form [d1, ..., dq]; second group of denominator parameters
z
expression
Description
The Meijer G function is defined by the inverse Laplace transform
where
and L is one of three types of integration paths , , and .
Contour starts at and finishes at .
All the paths , , and put all poles on the right and all other poles of the integrand (which must be of the form ) on the left.
The classical notation used to represent the MeijerG function relates to the notation used in Maple by
Note: See Prudnikov, Brychkov, and Marichev.
The MeijerG function satisfies the following th-order linear differential equation
where and p is less than or equal to q.
Examples
See Also
convert/StandardFunctions, dpolyform, hyperode, ModifiedMeijerG
References
Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. New York: Gordon and Breach Science Publishers, 1990.
Download Help Document