Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LommelS1 - the Lommel function s
LommelS2 - the Lommel function S
Calling Sequence
LommelS1(mu, nu, z)
LommelS2(mu, nu, z)
Parameters
mu
-
algebraic expression
nu
z
Description
The LommelS1(mu, nu, z) function is defined in terms of the hypergeometric function
FunctionAdvisor( definition, LommelS1);
and LommelS2(mu, nu, z) is defined in terms of LommelS1(mu, nu, z) and Bessel functions.
LommelS2(mu,nu,z) = convert(LommelS2(mu,nu,z), LommelS1);
These functions solve the non-homogeneous linear differential equation of second order.
z^2*diff(f(z),`$`(z,2))+z*diff(f(z),z)+(z^2-nu^2)*f(z) = z^(mu+1);
The Lommel functions also solve the following third order linear homogeneous differential equation with polynomial coefficients.
FunctionAdvisor( DE, LommelS1(mu,nu,z));
Examples
The AngerJ and WeberE, StruveH and StruveL functions can be viewed as particular cases of LommelS1.
A MeijerG representation for the Lommel functions.
The series expansion of the Lommel functions is not computable using the series command because it would involve factoring out abstract powers, leading to a result of the form z^mu1*series_1 + z^mu2*series_2 + .... This type of extended series expansion, however, can be computed using the Series command of the MathematicalFunctions package.
See Also
AngerJ, FunctionAdvisor, hypergeom, MathematicalFunctions, MeijerG, Struve Functions, WeberE
References
Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover publications.
Gradshteyn, and Ryzhik. Table of Integrals, Series and Products. 5th ed. Academic Press.
Luke, Y. The Special Functions and Their Approximations. Vol. 1 Chap. 6.
Download Help Document