Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
FunctionAdvisor/differentiation_rule - return the differentiation rule of a given mathematical function
Calling Sequence
FunctionAdvisor(differentiation_rule, math_function)
Parameters
differentiation_rule
-
literal name; 'differentiation_rule'
math_function
Maple name of mathematical function
Description
The FunctionAdvisor(differentiation_rule, math_function) command returns the differentiation rule for the function.
Examples
The variables used by the FunctionAdvisor command to create the calling sequence are local variables. To make the FunctionAdvisor command return results using global variables, pass the actual function call instead of the function name. Compare the following two input and output groups.
* Partial match of "diff" against topic "differentiation_rule".
For functions which accept different numbers of parameters, you can specify for which function call you want the differentiation rule by specifying the function with the appropriate number of arguments. For example, for Zeta, if given with only one argument specified, it represents the Hurwitz Zeta function and its differentiation rule is the following.
As another example, consider the exponential integral Ei.
See Also
Ei, FunctionAdvisor, FunctionAdvisor/DE, FunctionAdvisor/topics, Zeta
Download Help Document