Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Slode[candidate_mpoints] - determine m-points for m-sparse power series solutions
Calling Sequence
candidate_mpoints(ode, var)
candidate_mpoints(LODEstr)
Parameters
ode
-
homogeneous linear ODE with polynomial coefficients
var
dependent variable, for example y(x)
LODEstr
LODEstruct data structure
Description
The candidate_mpoints command determines for all positive integers candidate points for m-sparse power series solutions of the given homogeneous linear ordinary differential equation with polynomial coefficients, called m-points.
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be homogeneous and linear in var
ode must have polynomial coefficients in the independent variable of var, for example,
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
This command returns a list of lists with three elements:
an integer , the sparse order;
a LODEstruct representing an -sparse differential equation with constant coefficients which is a right factor of the given equation;
a set of candidate -points.
The list is sorted by sparse order.
If for some sparse-order the given equation has a nontrivial m-sparse right factor with constant coefficients, then the equation has m-sparse power series solutions at an arbitrary point, and these solutions are solutions of this right factor. If the set of candidate m-points is not empty, then the equation may or may not have m-sparse power series solutions at such a point, but it does not have m-sparse power series solutions at any point outside this set.
Examples
See Also
LODEstruct, Slode, Slode[candidate_points], Slode[msparse_series_sol]
Download Help Document