Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
arcsin, arccos, ... - The Inverse Trigonometric functions
arcsinh, arccosh, ... - The Inverse Hyperbolic functions
Calling Sequence
arcsin(x) arccos(x) arctan(x)
arcsec(x) arccsc(x) arccot(x)
arcsinh(x) arccosh(x) arctanh(x)
arcsech(x) arccsch(x) arccoth(x)
arctan(y, x)
Parameters
x
-
expression
y
Description
The arctrigonometric functions
arcsin
arccos
arctan
arcsec
arccsc
arccot
and archyperbolic functions
arcsinh
arccosh
arctanh
arcsech
arccsch
arccoth
compute inverses of the corresponding trigonometric and hyperbolic functions.
The arctrigonometric and archyperbolic function are calculated in radians (1 radian = 180/ degrees).
For information about expanding and simplifying trigonometric expressions, see expand, factor, combine/trig, and simplify/trig.
As the trigonometric and hyperbolic functions are not invertible over the entire complex plane, or for many of them even over the real line, it is necessary to define a principal branch for each such inverse function. This is done by restricting the forward function to a principal domain on which it is invertible, and taking that domain as the range of the inverse function.
This process necessarily results in discontinuities in the inverse functions, which can be taken to be along line segments (called branch cuts) in the real or imaginary axes. There is choice involved with this process, and the choices can have far reaching mathematical consequences. See invtrig/details for more information about Maple's choices for the branch cuts of these functions.
For real arguments x, y, the two-argument function arctan(y, x), computes the principal value of the argument of the complex number , so . This function is extended to complex arguments by the formula
Operator notation can also be used for the inverse trigonometric and hyperbolic functions. For example, sin@@(-1) (which is equivalent to in 2-D math) evaluates to .
Examples
See Also
@@, argument, convert, initialfunctions, invtrig/details, polar, RealDomain, trig, type/arctrig
Download Help Document