Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
WeierstrassP - The Weierstrass P function, P(z,g2,g3)
WeierstrassPPrime - The Derivative of the Weierstrass P function, P'(z,g2,g3)
WeierstrassZeta - The Weierstrass zeta function, zeta(z,g2,g3)
WeierstrassSigma - The Weierstrass sigma function, sigma(z,g2,g3)
Calling Sequence
WeierstrassP(z, g2, g3)
WeierstrassPPrime(z, g2, g3)
WeierstrassZeta(z, g2, g3)
WeierstrassSigma(z, g2, g3)
Parameters
z
-
algebraic expression
g2, g3
algebraic expressions (invariants)
Description
WeierstrassP (Weierstrass elliptic function), WeierstrassPPrime, WeierstrassZeta, and WeierstrassSigma are defined by
where sums and products range over such that is in . WeierstrassP and WeierstrassPPrime are elliptic functions (also known as doubly periodic functions) with periods and .
Quantities g2 and g3 are known as the invariants and are related to and by
where sums range over such that is in .
An important property of the invariants g2 and g3 is that WeierstrassP satisfies the differential equation
A special case of WeierstrassP happens when the discriminant is equal to zero, in which case and are related, can be expressed in terms of a single parameter, say , and the function is given by
Refer to Chapter 18, "Weierstrass Elliptic and Related Functions" of Handbook of Mathematical Functions edited by Abramowitz and Stegun for more extensive information.
Examples
See Also
EllipticF, EllipticK, EllipticPi, JacobiSN
Download Help Document