Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Solving Linear Second Order ODEs for which a Symmetry of the Form [xi=0, eta=F(x)] Can Be Found
Description
All second order linear ODEs have symmetries of the form [xi=0, eta=F(x)]. Actually, F(x) is always a solution of the related homogeneous ODE. There is no general scheme for determining F(x); see dsolve,linear).
When a symmetry of the form [xi=0, eta=F(x)] is found, this information is enough to integrate the homogeneous ODE (see Murphy's book, p. 88).
In the case of nonhomogeneous ODEs, you can do the following:
1) look for F(x) as a symmetry of the homogeneous ODE;
2) solve the homogeneous ODE using this information;
3) set each of _C1 and _C2 equal to 0 and 1 in the answer of the previous step, in order to obtain the two linearly independent solutions of the homogeneous ODE;
4) use these two independent solutions of the homogeneous ODE to build the general solution to the nonhomogeneous ODE (see Bluman and Kumei, Symmetries and Differential Equations, p. 132 and ?dsolve,references).
Examples
A nonhomogeneous ODE example
A nonhomogeneous example step by step
Steps 1) and 2) mentioned above
Step 3): two independent solutions for the homogeneous_ode
Step 4): a procedure for the general solution to the original nonhomogeneous ODE (ode[3]) is given by
where s1 and s2 are the linearly independent solutions of the homogeneous ode (sol_1 and sol_2 above), F is the nonhomogeneous term (here represented by F(x)), and W is the Wronskian, in turn given by
from which the answer to the nonhomogeneous ODE follows
See Also
DEtools, odeadvisor, dsolve,Lie, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear, sym_Fx, linear_sym, Bessel, Painleve, Halm, Gegenbauer, Duffing, ellipsoidal, elliptic, erf, Emden, Jacobi, Hermite, Lagerstrom, Laguerre, Liouville, Lienard, Van_der_Pol, Titchmarsh; for other differential orders see odeadvisor,types.
Download Help Document