Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Solving Second and Third Order ODEs using an Integrating Factor
Description
If, for an nth order ODE (n=2 or n=3) with the nth derivative isolated, there exists an integrating factor which depends only on the (n-1)st derivative, this integrating factor can be determined. The differential order of the ODE can then be reduced by one.
The general form of such an ODE of second order is:
reducible_ode_2 := diff(y(x),x,x)=diff(G(x,y(x)),x)/D(F)(diff(y(x),x));
where F and G are arbitrary functions of their arguments. The integrating factor in this case is
mu := D(F)(diff(y(x),x));
The reduced ODE then becomes
F(diff(y(x),x)) = G(x,y(x)) + _C1;
The general form of this ODE of third order is:
reducible_ode_3 := diff(y(x),x$3)=diff(G(x,y(x),diff(y(x),x)),x)/D(F)(diff(y(x),x,x));
mu := D(F)(diff(y(x),x,x));
The reduced ODE is
F(diff(y(x),x,x)) = G(x,y(x),diff(y(x),x)) + _C1;
Examples
Explicit or implicit results can be tested, in principle, using odetest. When testing multiple solutions, you can use map, as follows:
A third order ODE
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear; for other differential orders see odeadvisor,types.
Download Help Document