Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
factors - factor a multivariate polynomial
Calling Sequence
factors(a)
factors(a, K)
Parameters
a
-
multivariate polynomial
K
field extension over which to factor
Description
The factors command computes the factorization of a multivariate polynomial over the rationals, an algebraic number field, and with real or complex numeric coefficients.
Unlike the factor function where the input is any expression and the output is a product of sums in the general case, the input to the factors function must be a polynomial or a rational function, and the output is a data structure more suitable for programming purposes.
The factorization is returned in the form where where each (the factor) is a unit normal irreducible polynomial and each (its multiplicity) is a positive integer.
The call factors(a) factors over the field implied by the coefficients present: thus, if all the coefficients are rational, then the polynomial is factored over the rationals.
If the second argument K is the keyword real or complex, a floating-point factorization is performed over R and C respectively. Note, at present this is only implemented for univariate polynomials.
The call factors(a, K) factors the polynomial a over the algebraic number field defined by K. K must be a single RootOf, a list or set of RootOfs, a single radical, or a list or set of radicals.
Examples
The following is an example that has a rational function as input.
See Also
AFactors, factor, Factors, ifactors, PolynomialTools[Split], roots, sqrfree
Download Help Document