Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Solutions for Linear Ordinary Differential Equations (LODEs) via Differential Factorization
Description
One of the significant improvements for solving linear ODEs is the method which makes use of the factorization of differential operators (see diffop, and examples,diffop). As an example, the third order linear ODE
ode := x^2*diff(y(x),x$3) + (-x^3+3*x)*diff(y(x),x$2) + (-x^3+3*x)*y(x);
is solved as
dsolve(ode);
The method of solution takes advantage of the (sometimes) possible factorization of the linear differential operator associated to the given LODE. For example, for ode above, the differential operator is given by
DEtools[de2diffop](ode, y(x), [Dx,x]);
and this operator is factored as
DEtools[DFactor]((3), [Dx,x]);
The original ode is then solved by solving the LODEs determined by these two factors above (the solution to the left factor enters as a non-homogeneous term in the LODE associated to the right factor; solving this non-homogeneous LODE leads to the solution of ode).
As the second example, consider
ode := diff(y(x),x$3) - x*diff(y(x),x$2) - b^2*diff(y(x),x) + b^2*x*y(x);
This LODE is solved by dsolve as follows
In this case the solving method is taking advantage of the partial factorization
Dx^3-x*Dx^2-b^2*Dx+b^2*x = (Dx-x)*(Dx^2-b^2);
rather than the complete factorization
Dx^3-x*Dx^2-b^2*Dx+b^2*x = (Dx-x)*(Dx-b)*(Dx+b);
Even in cases where dsolve cannot find solutions for all the factors, it can still return a reduction of order expressed using a DESol structure. For example, for
ode := diff(y(x),x$3) + (x^3-x)*diff(y(x),x$2) - (x^4+3)*diff(y(x),x) - (x^3-x)*y(x);
we have
that is, a reduction of order by one, since, in the factorization
DEtools[DFactor]((11), [Dx,x]);
dsolve only succeeded in solving the right factor (the left factor has no Liouvillian solutions).
See Also
DEtools, diffop, dsolve,education, PDEtools
Download Help Document