Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
content - content of a multivariate polynomial
primpart - primpart of a multivariate polynomial
Calling Sequence
content(a, x, 'pp')
primpart(a, x, 'co')
Parameters
a
-
multivariate polynomial in x
x
(optional) name or set or list of names
pp
(optional) unevaluated name
co
Description
If a is a multivariate polynomial with integer coefficients, content returns the content of a with respect to x, thus returning the greatest common divisor of the coefficients of a with respect to the indeterminate(s) x. The indeterminate(s) x can be a name, list, or set of names.
The third argument pp, if present, will be assigned the primitive part of a, namely a divided by the content of a.
If the coefficients of a in x are rational functions then the content computed will be such that the primitive part is a multivariate polynomial over the integers whose content is 1.
Similarly, primpart returns a/content(a, x). The third argument co, if present, will be assigned the content. Note: Whereas the sign is removed from the content, it is not removed from the primitive part.
Examples
See Also
coeffs, Content, gcd, icontent
Download Help Document