Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SDMPolynom
Description
Sparse Distributed Multivariate Polynomial data structure is a dedicated data structure to represent polynomials. This data structure provides more efficient basic polynomial arithmetic than the generic sum. For example, the command a := SDMPolynom(x^3+5*x^2+11*x+15,x); creates the polynomial
This is a univariate polynomial in the variable x with integer coefficients.
Multivariate polynomials, and polynomials over other number rings and fields are constructed similarly. For example, a := SDMPolynom(x*y^3+sqrt(-1)*y+y/2,[x,y]); creates
This is a bivariate polynomial in the variables x and y whose coefficients involve the imaginary number , which is denoted by capital I in Maple.
The type function can be used to test for polynomials. For example the command type(a, SDMPolynom) tests whether the expression a is a polynomial in the variable x. For details, see type[SDMPolynom].
Polynomials in Maple are sorted in lexicographic order, that is, in descending power of the first indeterminate.
The remainder of this file contains a list of operations that are available for polynomials.
Utility Functions for Manipulating Polynomials
coeff
extract a coefficient of a polynomial
coeffs
construct a sequence of all the coefficients
degree
the degree of a polynomial
lcoeff
the leading coefficient
ldegree
the low degree of a polynomial
tcoeff
the trailing coefficient
indets
the indeterminate of a polynomial
Arithmetic Operations on Polynomials
All the arithmetic operations on polynomials are wrapped inside the constructor SDMPolynom.
+,-
addition and subtraction
*,^
multiplication and exponentiation
Prem
pseudo-remainder of two polynomials
Mathematical Operations on Polynomials
diff
differentiate a polynomial
subs
evaluate a polynomial
eval
Miscellaneous Polynomial Operations
norm
norm of a polynomial
maxnorm
maximum norm of a polynomial
map
mapping an operation on the coefficients of a polynomial
convert
converting Polynomials to a Sum of Products
Thread Safety
The SDMPolynom command is thread-safe as of Maple 15.
For more information on thread safety, see index/threadsafe.
Examples
See Also
convert, indets, polynomial, series, type, type[SDMPolynom]
Download Help Document