Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[InverseTransformation] - find the inverse of a transformation
Calling Sequence
InverseTransformation(Phi, options)
Parameters
Phi
-
a transformation mapping one manifold M to another manifold N
options
branch = "all" or branch = [pt1, pt2], where pt2 is a list of coordinates (Maple expressions) defining a point in M and Phi(pt2) = pt1
Description
The InverseTransformation command uses the Maple solve command to find a (local) inverse transformation Psi: N -> M, that is, Psi o Phi = identity on M and Phi o Psi = identity on N.
Use the Maple environment variable _EnvExplicit = true to obtain explicit formulas for the inverse.
In the case where there are multiple local inverses, the first one in the list returned by solve is returned by InverseTransformation.
With branch = "all", InverseTransformation returns a list of all the inverse transformations.
With branch = [pt1, pt2], InverseTransformation returns the particular inverse transformation Psi satisfying Psi(pt1) = pt2.
This command is part of the DifferentialGeometry package, and so can be used in the form InverseTransformation(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-InverseTransformation.
Examples
Define a pair of 2-dimensional manifolds.
Example 1.
Define a simple transformation Phi1: M -> N with a unique global inverse.
Use ComposeTransformations to checks the result of InverseTransformation.
Example 2.
Define a transformation Phi2: M -> N with multiple local inverses.
To get explicit solutions:
To get all possible inverses:
Since Phi2([- 1, - 1]) = [1, 1], we can ask for that particular inverse which maps [1, 1] to [- 1, - 1]. We can use either [1, 1] or [u = 1, v = 1] as arguments in the command InverseTransformation to indicate the coordinates of the point.
See Also
DifferentialGeometry, ComposeTransformations, Transformation
Download Help Document