Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Solving ODEs That Do Not Contain Either the Dependent or Independent Variable
Description
The general form of an nth order ODE that is missing the dependent variable is:
missing_y_ode := F(x,'seq(diff(y(x),x$i),i=1..n)');
where F is an arbitrary function of its arguments. The order can be reduced by introducing a new variable p(x) = diff(y(x),x). If the reduced ODE can be solved for p(x), the solution to the original ODE is determined as a quadrature.
The general form of an nth order ODE that is missing the independent variable is:
missing_x_ode := F(y(x),'seq(diff(y(x),x$i),i=1..n)');
where F is an arbitrary function of its arguments. The transformation
yields a reduction of order. If the reduced ODE can be solved for p(y), the solution to the original ODE can be given implicitly as
x = Int(1/p(y),y) + _C1;
See Murphy, "Ordinary Differential Equations and their Solutions", 1960, sections B2(1,2), and C2(1,2).
Examples
Explicit and implicit answers can be tested, in principle, using odetest:
In the case of multiple answers it is convenient to "map" odetest as follows:
The most general third order ODE missing x. This ODE cannot be solved to the end: its solution involves the solving of the most general second order ODE. However, its differential order can be reduced (see ?dsolve,ODESolStruc):
The most general third order ODE missing y.
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear; for other differential orders see odeadvisor,types.
Download Help Document