Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[LyapunovSolve] - solve the continuous Lyapunov equation
Calling Sequence
LyapunovSolve( A, C )
LyapunovSolve( A, C, isgn )
LyapunovSolve( A, C, isgn, outopts, tranA, schurA )
Parameters
A
-
Matrix; input matrix of dimension m x m
C
Matrix; second input matrix of dimension m x m
isgn
(optional) {-1,1}; indicates the sign of the term X . A (second term)
outopts
(optional); constructor options for Matrix output
tranA
(optional) `transpose[A]` = {truefalse,identical(transpose,hermitiantranspose)} ; specifies operation on A prior to solving
schurA
(optional) `Schur[A]` = truefalse; specifies whether A is in Schur form
Description
The LyapunovSolve command computes the solution to the continuous Lyapunov matrix equation
The returned solution is an expression sequence consisting of the Matrix X followed by the scalar scale.
This routine operates in the floating-point domain. Hence, the entries in the Matrix arguments must necessarily be of type complex(numeric).
The continuous Lyapunov equation is a special case of the Sylvester equation.
Options
The isgn argument designates the sign of the second term of the left hand side of the equation. The default value of this argument is 1.
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
The tranA argument specifies whether the first Matrix argument A should be transposed prior to solving. The default value of this argument is false.
The schurA argument specifies whether to omit reduction of the first Matrix argument to Schur form. This avoids unnecessary computation in the case that the first Matrix argument is already in Schur form. The default value of this argument is false.
Examples
Warning, Matrices have common or very close eigenvalues; perturbed values were used to solve the equation
See Also
LinearAlgebra, LinearAlgebra[SchurForm], LinearAlgebra[SylvesterSolve]
Download Help Document