Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[regularsp] - compute the regular singular points of a second order non-autonomous linear ODE
Calling Sequence
regularsp(des, ivar, dvar)
Parameters
des
-
second order linear ordinary differential equation or its list form
ivar
indicates the independent variable when des is a list with the ODE coefficients
dvar
indicates the dependent variable, required only when des is an ODE and the dependent variable is not obvious
Description
Important: The regularsp command has been deprecated. Use the superseding command DEtools[singularities], which computes both the regular and irregular singular points, instead.
The regularsp command determines the regular singular points of a given second order linear ordinary differential equation. The ODE could be given as a standard differential equation or as a list with the ODE coefficients (see DEtools[convertAlg]). Given a linear ODE of the form
p(x) y''(x) + q(x) y'(x) + r(x) y(x) = 0, p(x) <> 0, p'(x) <> 0
a point alpha is considered to be a regular singular point if
1) alpha is a singular point,
2) limit( (x-alpha)*q(x)/p(x), x=alpha ) = 0 and
limit( (x-alpha)^2*r(x)/p(x), x=alpha ) = 0.
The results are returned in a list. In the event that no regular singular points are found, an empty list is returned.
Examples
An ordinary differential equation (ODE)
Warning, DEtools[regularsp] has been superseded by DEtools[singularities]
The coefficient list form
You can convert convert an ODE to the coefficient list form using DEtools[convertAlg] form
See Also
DEtools, DEtools[convertAlg], DEtools[indicialeq], DEtools[singularities]
Download Help Document