Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[line_int] - compute F, the solution to Nabla(F) = G, as a line integral when the partial derivatives of F are given
Calling Sequence
line_int(DF, X)
line_int(DF, X, check, simp_proc)
Parameters
DF
-
list of partial derivatives to be used when computing the line integral
X
integration variables list to be used when computing the line integral
check
check whether DF is a total derivative before further computations
simp_proc
any simplification procedure to be applied to all integrands before evaluating the integrals
Description
The line_int command computes the solution to the equation as a line integral when the partial derivatives of F are given as a list DF. For example, if , where are partial derivatives of with respect to then line_int([Fx, Fy,...], [x,y,...]) will return up to an additive constant.
For a line integral to make sense (return an answer which is correct), DF must be a total derivative. By default, line_int does not check whether DF is true or false. It is, however, possible to force line_int to check before doing any further computations, by including the word check in the calling sequence as the third or fourth argument.
By default line_int does not apply any simplification to the integrands before evaluating the line integral. However, in many cases (especially if the dimension of the line integral is greater than 2), it may be convenient to simplify the integrand before performing each integration: Enter a simplification procedure as the third or fourth argument of the command.
This function is part of the DEtools package, and so it can be used in the form line_int(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[line_int](..).
Examples
This example uses three variables.
Here is an example of the most general line integral of two variables.
This example uses the optional check argument. Let's introduce a 'false' total derivative.
The extra argument check forces the command to verify the integrability conditions; an error message is returned when DF is not a total derivative.
Error, (in `ODEtools/line_int`) The given first argument, [y^2, 2*x^2*y], is not a total derivative
See Also
DEtools, dsolve, int, PDEtools
Download Help Document