Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[eta_k] - determines the k-prolongation of the infinitesimals of a one-parameter Lie group
Calling Sequence
eta_k([xi, eta], k, y(x))
eta_k([xi, eta], k, ODE)
eta_k([xi, eta], k, y(x), ODE)
Parameters
[xi, eta]
-
list of the coefficients of the symmetry generator (infinitesimals)
k
positive integer indicating the order of the required prolongation
y(x)
'dependent variable'; it can be any indeterminate function of one variable
ODE
ODE invariant under the given infinitesimals; required only if they represent dynamical symmetries
Description
eta_k receives a pair of infinitesimals; k, the order of the required prolongation; and the dependent variable y(x), and returns the k-prolongation of eta (see infgen).
This command also works with dynamical symmetries, in which case the ODE that is assumed to be invariant under the given infinitesimals is also required as an argument. The right hand side of the given nth order ODE is then used to replace the nth order derivatives of the dependent variable appearing in the prolongation of eta.
If the infinitesimal generator of a Lie group is written as
X = (F -> xi(x,y)*diff(F,x) + eta(x,y)*diff(F,y));
where y(x) plays the role of the dependent variable, the k prolongation of eta is obtained as follows.
1) The linear operator A corresponding to the given ODE is built
A = (F -> diff(F,x) + _y1*diff(F,y) + _y2*diff(F,y,y) + `...` + rhs_ODE * diff(y(x),x$(n-1)));
(rhs_ODE means the right hand side of the ODE).
2) The expression
eta[n] = A(eta[n-1])- diff(y(x),x$n)*A(xi);
is evaluated recursively, and in the case of dynamical symmetries, the highest order derivative is replaced by the right hand side of the ODE.
This function is part of the DEtools package, and so it can be used in the form eta_k(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[eta_k](..).
Examples
Find the infinitesimals corresponding to the one-parameter rotation group (rotations in the plane), and the first, second, and third prolongations of eta.
These prolongations of eta enter the expression of the extended related infinitesimal generator (a differential operator, see ?infgen).
You can also determine point symmetries for second order ODEs. The general case is as follows:
The prolongation of order 0 is just eta(x,y):
The first and second prolongations of eta look like this:
Finally, here is the general case of a dynamical symmetry in the framework of second order ODEs and the first prolongation of eta.
See Also
DEtools, dsolve,Lie, equinv, infgen, odeadvisor, PDEtools, symgen
Download Help Document