Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Rational Polynomials (Rational Functions)
Description
In Maple rational functions are created from names, integers, and other Maple values for the coefficients using the arithmetic operators +, -, *, /, and ^. For example: 7+x/(x^4-3*x+1) creates the rational function
It is a rational function in the variable x over the field of rational numbers. Multivariate rational functions, and rational functions over other number rings and fields are constructed similarly. For example: y^3/x/(sqrt(-1)*y+y/2) creates
a rational function in the variables x and y whose coefficients involve the imaginary number i which is denoted by capital I in Maple.
This remainder of this file contains a list of operations which are available for rational functions. Note: many of the functions and operations described in the help page for polynom apply to the rational function case.
Utility Functions for Manipulating Rational Functions.
denom
extract the denominator of a rational function
normal
normal form for rational functions
numer
extract the numerator of a rational function
subs
evaluate a rational function
Mathematical Operations on Rational Functions.
asympt
asymptotic series expansion
diff
differentiate a rational function
int
integrate a rational function (indefinite/definite integration)
limit
compute a limit of a rational function
sum
sum a rational function (indefinite or definite summation)
series
general power series expansion
taylor
Taylor series expansion
Operations for Regrouping Terms of Rational Functions.
collect
group coefficients of like terms together
confrac
convert a series or rational function to a continued fraction
see convert[confrac]
horner
convert all polynomial sub-expressions to horner form
see convert[horner]
factor
factor the numerator and denominator
parfrac
partial fraction expansion of a rational function
see convert[parfrac]
ratpoly
convert a series to a rational function (Pade approximation)
see convert[ratpoly]
sort
sort all polynomial sub-expressions
The type function can be used to test for rational polynomials. For example the test type(a, ratpoly(integer, x)) tests whether the expression is a rational polynomial in the variable x with integer coefficients. See type[ratpoly] for further details.
See Also
convert, polynom, series, type, type[ratpoly]
Download Help Document