Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Irreduc - inert irreducibility function
Calling Sequence
Irreduc(a)
Irreduc(a, K)
Parameters
a
-
multivariate polynomial
K
RootOf
Description
The Irreduc function is a placeholder for testing the irreducibility of the multivariate polynomial a. It is used in conjunction with mod and modp1.
Formally, an element a of a commutative ring R is said to be "irreducible" if it is not zero, not a unit, and implies either b or c is a unit.
In this context where R is the ring of polynomials over the integers mod p, which is a finite field, the units are the non-zero constant polynomials. Hence all constant polynomials are not irreducible by this definition.
The call Irreduc(a) mod p returns true iff a is "irreducible" modulo p. The polynomial a must have rational coefficients or coefficients from a finite field specified by RootOf expressions.
The call Irreduc(a, K) mod p returns true iff a is "irreducible" modulo p over the finite field defined by K, an algebraic extension of the integers mod p where K is a RootOf.
The call modp1(Irreduc(a), p) returns true iff a is "irreducible" modulo p. The polynomial a must be in the modp1 representation.
Examples
See Also
AIrreduc, Factor, irreduc, isprime, mod, modp1, RootOf
Download Help Document