Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
AiryAi, AiryBi - The Airy Ai and Bi wave functions
Calling Sequence
AiryAi(x)
AiryBi(x)
AiryAi(n, x)
AiryBi(n, x)
Parameters
n
-
algebraic expression (the order or index)
x
algebraic expression (the argument)
Description
The Airy wave functions AiryAi and AiryBi are linearly independent solutions for w in the equation . Specifically,
where 0F1 is the generalized hypergeometric function, and .
The two argument forms are used to represent the derivatives, so AiryAi(1, x) = D(AiryAi)(x) and AiryBi(1, x) = D(AiryBi)(x). Note that all higher derivatives can be written in terms of the 0'th and 1st derivatives.
Note also that is the 3rd derivative of evaluated at , and not the 3rd derivative of .
The Airy functions are related to Bessel functions of order for (see the examples below).
Examples
See Also
AiryZeros, Bessel, convert[Airy], convert[Bessel], initialfunctions
Download Help Document