Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Ei - The Exponential Integral
Calling Sequence
Ei(z)
Ei(a, z)
Parameters
z
-
algebraic expression
a
Description
The exponential integrals, Ei(a, z), are defined for by
Ei(a, z) = convert(Ei(a, z), Int) assuming Re(z) > 0;
This classical definition is extended by analytic continuation to the entire complex plane using
Ei(a, z) = z^(a-1)*GAMMA(1-a, z);
with the exception of the point 0 in the case of .
For all of these functions, 0 is a branch point and the negative real axis is the branch cut. The values on the branch cut are assigned such that the functions are continuous in the direction of increasing argument (equivalently, from above).
The classical definition for the 1-argument exponential integral is a Cauchy Principal Value integral, defined for real arguments x, as the following
convert(Ei(x),Int) assuming x::real;
value((3));
for , . This classical definition is extended to the entire complex plane using
Note that this extension has its branch cut on the negative real axis, but unlike for the 2-argument functions this extension is not continuous onto the branch cut from either above or below. That is, this extension provides an analytic continuation of from the positive real axis, but not in any direction from the negative real axis. If you want a continuation from the negative real axis, use in place of .
Examples
See Also
Ci, convert, expand, inifcns, int, Li, simplify
References
Abramowitz, M. and Stegun, I. Handbook of Mathematical Functions. New York: Dover Publications Inc., 1965.
Download Help Document