Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GAMMA - Gamma and incomplete Gamma functions
lnGAMMA - log-Gamma function
Calling Sequence
GAMMA(z)
GAMMA(a, z)
lnGAMMA(z)
Parameters
z
-
algebraic expression
a
Description
The Gamma function is defined for Re(z)>0 by
and is extended to the rest of the complex plane, less the non-positive integers, by analytic continuation. GAMMA has a simple pole at each of the points z=0,-1,-2,....
The incomplete Gamma function is defined as:
where 1F1 is the confluent hypergeometric function (in Maple notation, 1F1(a,1+a,-z) = hypergeom([a],[1+a],-z)).
For Re(a)>0, we also have the integral representation
(Some authors refer to Maple's incomplete Gamma function as the complementary or upper incomplete Gamma function, and call GAMMA(a)-GAMMA(a,z) the incomplete or lower incomplete Gamma function.)
The GAMMA function extends the classical factorial function to the complex plane: GAMMA( n ) = (n-1)!. In general, Maple does not distinguish these two functions, although the factorial function will evaluate for any positive integer, while for integer n, GAMMA(n) will evaluate only if n is not too large. Use expand to force GAMMA(n) to evaluate.
You can enter the command GAMMA using either the 1-D or 2-D calling sequence. For example, GAMMA(5) is equivalent to .
For positive real arguments z, the lnGAMMA function is defined by:
For complex z, Maple evaluates the principal branch of the log-Gamma function, which is defined by analytic continuation from the positive real axis. Each of the points z=0,-1,-2,..., is a singularity and a branch point, and the union of the branch cuts is the negative real axis. On the branch cuts, the values of lnGAMMA(z) are determined by continuity from above. (Note, therefore, that lnGAMMA <> ln@GAMMA in general.)
Examples
See Also
Beta, convert, expand, factorial, initialfunctions, Psi, simplify/GAMMA
References
Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953.
Hare, D. E. G. "Computing the Principal Branch of log-Gamma." Journal of Algorithms, (November 1997): 221-236.
Download Help Document