Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Functions Known to evalc
Description
The following functions are known to evalc, in the sense that their real and imaginary parts are known for all complex arguments in their domains.
sin
cos
tan
csc
sec
cot
sinh
cosh
tanh
csch
sech
coth
arcsin
arccos
arctan
arccsc
arcsec
arccot
arcsinh
arccosh
arctanh
arccsch
arcsech
arccoth
exp
ln
sqrt
`^`
abs
conjugate
polar
argument
signum
csgn
Re
Im
The following functions are partially known to evalc, in the sense that their real and imaginary parts are known for some complex arguments in their domains, and/or it is known that the functions are not real valued everywhere on the real line.
Ei
LambertW
Psi
dilog
surd
Ci
Si
Chi
Shi
Ssi
If evalc is applied to an expression involving RootOfs of polynomials, the polynomials are split into pairs of polynomials whose roots include the real and imaginary parts of the roots of the original polynomials.
If evalc is applied to an expression involving ints (or sums), each such integral (or sum) are split into two integrals (or sums) of real functions, giving the real and imaginary parts of the original integrals (or sums).
evalc assumes that all variables represent real-valued quantities. evalc further assumes that unknown functions of real variables are real valued.
See Also
evalc
Download Help Document