Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
evalc - symbolic evaluator over the complex field
Calling Sequence
evalc(expr)
Parameters
expr
-
any expression
Description
This evalc(expr) calling sequence is used to manipulate complex-valued expressions, such as , by attempting to split such expressions into their real and imaginary parts. Whenever possible, the output from evalc is put into the canonical form .
The fundamental assumption that evalc makes is that unknown variables represent real-valued quantities. Thus, for example, evalc(Re(a+I*b)) = a and evalc(Im(a+b)) = 0. Furthermore, evalc also assumes that an unknown function of a real variable is real valued.
The assume command can be used to override these default assumptions. For example, assume(u::complex) tells evalc that u is not necessarily real. Note also that some usages of the assume command implicitly imply real and others do not. For example assume(u<1) implies u is real but assume(v^2<1) and assume(abs(v)<1) do not imply that v is real.
The evalc command maps onto sets, lists, equations and relations. The evalc command applied to a complex series will be a series with each coefficient in the above canonical form.
When evalc encounters a function whose decomposition into real and imaginary parts is unknown to it (such as f(1+I) where f is not defined), it attempts to put the arguments in the above canonical form.
The standard functions Re, Im, abs, and conjugate are recognized by evalc, and when such functions are invoked from within a call to evalc they apply the assumptions outlined above. For example, evalc(abs(a+I*b)) = sqrt(a^2+b^2).
A complex-valued expression may be represented to evalc as polar(r,theta) where r is the modulus and theta is the argument of the expression.
For a complete list of the functions initially known to evalc, see evalc/functions.
Examples
Set an assumption on . An alternative way to set this assumption is with assume(-1<v,v<1), which implicitly assumes is real.
See Also
assume, evalc/functions, evalf, polar, Re
Download Help Document