Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Parse Redundant Brackets in Superscripts as Derivatives
The following explains the use of the Parse redundant brackets in superscripts as derivatives option in the Typesetting Rule Assistant dialog.
Background
If you want to represent f*f*f*f*f, you might enter f^5. In standard notation in calculus, derivatives are denoted by primes, such as f', f''.
At a certain order of derivative, entering and counting the number of primes becomes cumbersome. For example, what is f''''''''''?
Bracketed number notation is used to describe a derivative, so the above is written as f^(10), where the brackets are redundant. These redundant brackets are the key between detecting this notation as opposed to just f times itself 10 times, which is f^10.
For example:
f^5 -> f*f*f*f*f
f^(5) -> diff(f(x),x,x,x,x,x)
The ability to turn off this notation is necessary in the following example cases.
f^(#)
f^(n)
(expr)^(#)
(expr)^(n)
Where in the above '#' is a positive number, and 'n' is any single variable.
Note: The following cases do not apply for the reasons indicated.
f^(a+b) -> Brackets are redundant, are needed, and always a power.
(f+x)^(a+b) -> Brackets are redundant, are needed, and always a power.
f^(n)(x) -> Functions are not included, and have different rules.
sin^(n)(x) -> Same as above, includes known functions.
Using the Option in the Typesetting Rule Assistant
For the cases in which the rule does apply:
The query setting is the default setting, and displays a query dialog.
The always setting interprets the redundant brackets always as derivatives.
The never setting interprets as a power.
See Also
Typesetting Rule Assistant
Download Help Document