Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Stirling1 - computes the Stirling numbers of the first kind
Calling Sequence
Stirling1(n, m)
combinat[stirling1](n, m)
Parameters
n, m
-
integers
Description
The Stirling1(n,m) command computes the Stirling numbers of the first kind using the (implicit) generating function
Instead of Stirling1 you can also use the synonym combinat[stirling1].
Regarding combinatorial functions, is the number of permutations of n symbols that have exactly m cycles. The Stirling numbers also enter binomial series, Mathieu function formulas, and are relevant in physical applications.
The Stirling numbers of the first kind can be expressed as an explicit Sum with the Stirling numbers of second kind in the coefficients:
Since the Stirling numbers of the second kind also admit an explicit Sum representation,
then, an explicit double Sum representation for Stirling1 is possible by combining the two formulas above. (See the Examples section.)
Examples
Stirling1 only evaluates to a number when and are positive integers
See Also
combinat, Stirling2
Download Help Document