Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Statistics[ExponentialSmoothing] - apply exponential smoothing to a data set
Calling Sequence
ExponentialSmoothing(X, lambda, options)
Parameters
X
-
data set
lambda
smoothing constant
options
(optional) equation(s) of the form option=value where option is one of ignore, or initial; specify options for the ExponentialSmoothing function
Description
The ExponentialSmoothing function computes exponentially weighted moving averages for the original observations using the formula
where N is the number of elements in A and by default. This is useful for smoothing the data, thus eliminating cyclic and irregular patterns and therefore enhancing the long term trends.
The first parameter X is a single data sample - given as a Vector or list. Each value represents an individual observation.
The second parameter lambda is the smoothing constant, which can be any real number between 0 and 1.
Options
The options argument can contain one or more of the options shown below. These options are described in more detail in the Statistics[Mean] help page.
ignore=truefalse -- This option is used to specify how to handle non-numeric data. If ignore is set to true all non-numeric items in data will be ignored.
initial=deduce, or realcons -- This option is used to specify the initial value for the smoothed observations. By default, the first of the original observations is taken as the initial value.
Examples
See Also
Statistics, Statistics[DataSmoothing], Statistics[LinearFilter], Statistics[MovingAverage]
Download Help Document