Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
type/linear - check for linear functions
type/quadratic - check for quadratic functions
type/cubic - check for cubic functions
type/quartic - check for quartic functions
Calling Sequence
type(a, linear(v))
type(a, quadratic(v))
type(a, cubic(v))
type(a, quartic(v))
Parameters
a
-
expression
v
indeterminate or list or set of indeterminates
Description
Check if the expression a is linear (quadratic, cubic, or quartic) in the indeterminates v. If v is not specified, this is equivalent to the call type(a, linear(indets(a))) That is, a must be linear (quadratic, cubic, quartic) in all of its indeterminates.
The definition of linear in the indeterminates v is type(a, polynom(anything, v)) and (degree(a, v) = 1) where degree means ``total degree'' in the case of several variables. The definitions for quadratic, cubic and quartic are analogous with degree(a, v) = 2, 3, and 4 respectively.
Note, if you wish to also determine the coefficients, for example, test if a polynomial is of the form and pick off the coefficients a and b, it is NOT recommended that you use the type test followed by the coeff function. The coeff function requires that the polynomial is expanded (collected) in x, and the type test is only syntactic. It may return true and a value for a which is in fact mathematically 0. The ispoly function should be used instead.
Examples
See Also
degree, indets, ispoly, polynom, type, type[polynom]
Download Help Document