Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[cov_diff] - covariant derivative of a tensor_type
Calling Sequence
cov_diff( U, coord, Cf2)
Parameters
U
-
tensor_type whose covariant derivative is to be computed
coord
list of names of the coordinate variables
Cf2
rank three tensor_type of character [1,-1,-1] representing the Christoffel symbols of the second kind
Description
Specifically,
Given the coordinate variables, coord, and the Christoffel symbols of the second kind, Cf2, and any tensor_type U, cov_diff( U, coord, Cf2 ) constructs the covariant derivative of U, which will be a new tensor_type of rank one higher than that of U.
The extra index due to the covariant derivative is of covariant character, as one would expect. Thus, the index_char field of the resultant tensor_type is .
Simplification: This routine uses the `tensor/cov_diff/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/cov_diff/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/cov_diff/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form cov_diff(..) only after performing the command with(tensor) or with(tensor, cov_diff). The function can always be accessed in the long form tensor[cov_diff](..).
Examples
Define the coordinate variables and the Schwarzchild covariant metric tensor:
Compute the Christoffel symbols of the second kind using the appropriate routines:
Now given a tensor, you can compute its covariant derivatives using cov_diff. First, compute the covariant derivatives of the metric. Expect to get zero.
Now compute the Riemann tensor and find its covariant derivatives:
Show the covariant derivative of the 1212 component with respect to x2:
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor/partial_diff, tensor[Christoffel2], tensor[indexing], tensor[simp]
Download Help Document