Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
polytools[minpoly] - find minimum polynomial from an approximate root
Calling Sequence
minpoly(r, n)
minpoly(r, n, acc)
Parameters
r
-
approximate root
n
degree of the polynomial sought
acc
desired accuracy of the approximation
Description
Important: The polytools package has been deprecated. Use the superseding command PolynomialTools[MinimalPolynomial] instead.
The minpoly function uses the lattice algorithm to find a polynomial of degree n (or less) with small integer coefficients which has the given approximation r of an algebraic number as one of its roots.
The root r may be real or complex. It may be input as a floating-point approximation to a root or as an exact algebraic number. In the latter case, it will first be evaluated in floating-point at Digits precision.
If a third argument is specified, then the value is given the same weight as the coefficients in determining the polynomial. The default value for acc is 10^(Digits-2).
Examples
See Also
IntegerRelations[LLL], PolynomialTools[MinimalPolynomial]
Download Help Document