Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numtheory[thue] - solve a Thue equation or inequality
Calling Sequence
thue(ex, vars, k, w)
thue(ex, vars, k)
thue(ex, vars, w)
thue(ex, vars)
Parameters
ex
-
Thue equation or Thue inequality
vars
list of two names, [x, y]
k
(optional) positive integer
w
(optional) unevaluated variable
Description
Let be a rational binary form in , irreducible over , and m an integer. The Thue equation has the form and the Thue inequality has the form (with ).
This function computes all solutions in of the given Thue equation or inequality ex, subject to the constraint . If k is omitted, it defaults to 10.
In the equation case, if there are no solutions with the above constraint and the last argument to thue is an unevaluated name (i.e., w is given), then to it will be assigned an expression sequence consisting of a diagnostic message and the integers m' in the range such that the given Thue equation has a solution when m is replaced by m'.
In the inequality case, if the last argument to thue is an unevaluated name (i.e., w is given), then w is assigned the set of values obtained by substituting the various solutions to the inequality into the left hand side of the given Thue inequality.
Note that in the inequality case, ex must be given in the form and not simply .
This function is part of the numtheory package, and so can be used in the form thue(..) only after performing the command with(numtheory). The function can always be accessed in the long form numtheory[thue](..).
Examples
Note that the binary forms must be irreducible:
Error, (in numtheory:-thue) this binary form is not irreducible
See Also
isolve, numtheory
Download Help Document